The Semantically Reflected Digital Twin

ICTAC Summer School Tutorial 2022

Einar Broch Johnsen Silvia Lizeth Tapia Tarifa Rudolf Schlatte Eduard Kamburjan

University of Oslo

Today

- Part I Digital Twins Introduction: Concepts and Engineering Perspectives
- **Part II** Modelling Knowledge using Semantic Technologies

Tomorrow:

- Part III Modelling Physical Systems
- Part IV Semantically Reflected Digital Twins

Digital Twins — The Hype

Digital twins are an emerging, enabling technology for industry to transition to the next level of digitisation

Digital Twins — The Hype

Digital twins are an emerging, enabling technology for industry to transition to the next level of digitisation

Increasing traction

- 1. Digital twins: a means to **understand** and **control** assets in nature, in industry, and in society at large
- 2. Companies increasingly create digital twins of their physical assets

Digital Twins — The Hype

Digital twins are an emerging, enabling technology for industry to transition to the next level of digitisation

Increasing traction

- 1. Digital twins: a means to **understand** and **control** assets in nature, in industry, and in society at large
- 2. Companies increasingly create digital twins of their physical assets

Success stories

- GE experienced 5–7% increase of energy production from digitizing wind farms
- Johns Hopkins Hospital's centre for clinical logistics reported 80% reduction of operating theatre holds due to delays
- 3. For the Johan Sverdrup oil field, digital twin innovations have boosted earnings by \$216 million in one year

Digital Twins: Emerging Engineering Discipline

- DTs originally conceived at NASA for the space program.
- They have emerged as an engineering discipline, based on **best practices**

NASA's definition of a DT

"an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that uses the best available physical models, sensor updates, fleet history, etc., to mirror the life of its flying twin. It is ultra-realistic and may consider one or more important and interdependent vehicle systems"

NASA Modeling, Simulation, Information Tech. & Processing Roadmap, 2010

DTs & Models

Is a digital twin just another word for "model"?

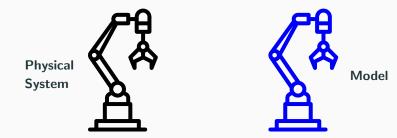
DTs & Models

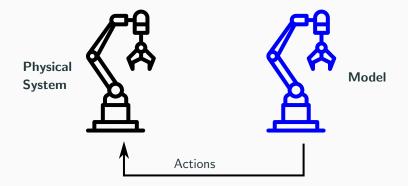
Is a digital twin just another word for "model"?

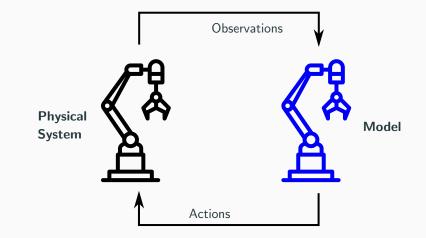
Is a digital twin just another word for "control system"?

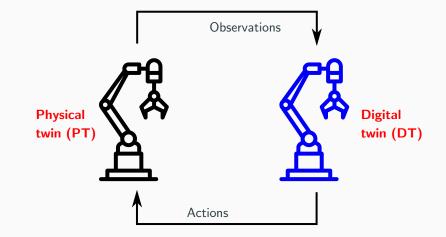
DTs & Models

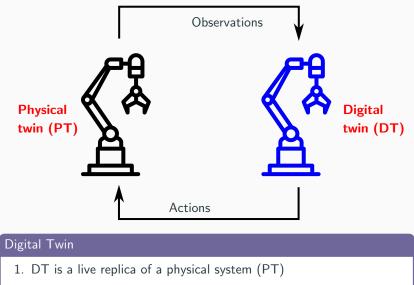
Is a digital twin just another word for "model"?

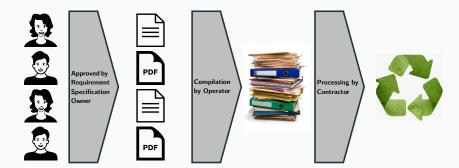



Is a digital twin just another word for "control system"?


A digital twin integrates aspects of models and control systems



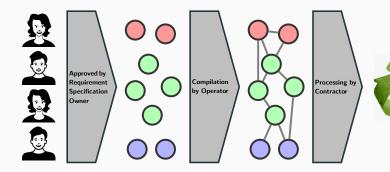




2. DT is connected to PT in near real-time via data streams

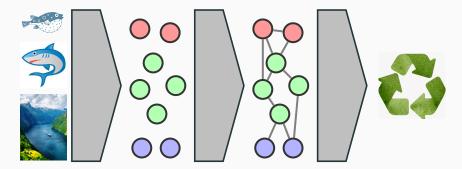
Lifecycle Management

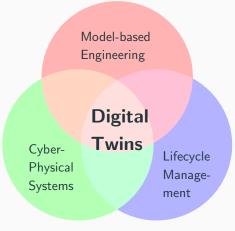
Digital Thread: The Digital Twin Evolves in Tandem with the Asset


- 1. Connects the designs, requirements and software that go into the system represented by the DT
- 2. Connects the different phases of the system to the DT: design, development, operation, decommissioning, ...

Lifecycle Management

Digital Thread: The Digital Twin Evolves in Tandem with the Asset

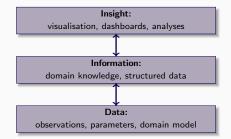

- 1. Connects the designs, requirements and software that go into the system represented by the DT
- 2. Connects the different phases of the system to the DT: design, development, operation, decommissioning, ...

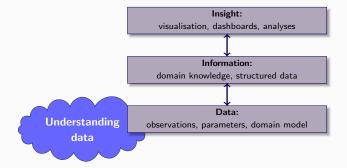


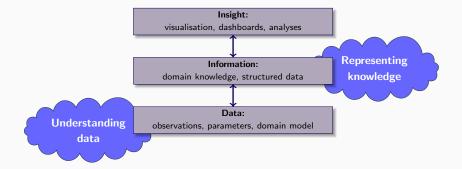
Lifecycle Management

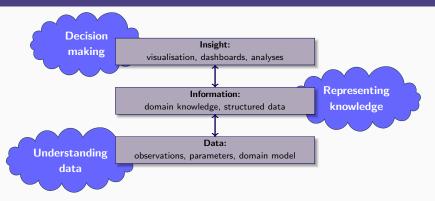
Digital Thread: The Digital Twin Evolves in Tandem with the Asset

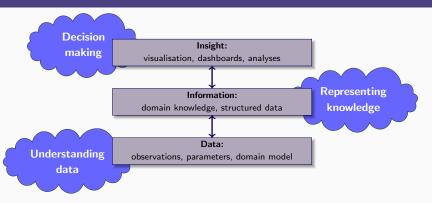
- 1. Connects the designs, requirements and software that go into the system represented by the DT
- 2. What are the lifecycle events for operational systems?

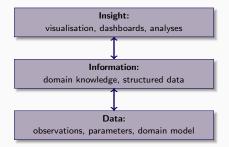

DTs: a new paradigm in SE


- Models go beyond the system design phase
- Model-centric systems the purpose is not models to build software, but software to maintain models
- Model evolution:

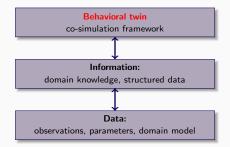

reflect changes to the asset (automatically) throughout its lifetime


• CPS in-the-large:


distributed, heterogeneous

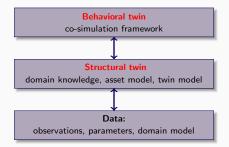


- Descriptive: Insight into the past ("what happened" scenarios)
- **Predictive:** Understanding the future ("what may happen" scenarios)
- Prescriptive: Advise on possible outcomes ("what if" scenarios)
- Reactive: Automated decision making


From Information to Insight (and Back Again)

Between information and insight

- Interesting to explore relations between the different layers: information and insight
- We are currently exploring connections between behavioral analyses (e.g., using simulators) and knowledge representation in the information layer


From Information to Insight (and Back Again)

Between information and insight

- Interesting to explore relations between the different layers: information and insight
- We are currently exploring connections between behavioral analyses (e.g., using simulators) and knowledge representation in the information layer

From Information to Insight (and Back Again)

Between information and insight

- Interesting to explore relations between the different layers: information and insight
- We are currently exploring connections between behavioral analyses (e.g., using simulators) and knowledge representation in the information layer

What is the role of formal methods in digital twins?

What is the role of formal methods in digital twins?

- Conceptual clearness, semantics, compositionality
- Correctness
- Better tool support
- Beyond simulation: worst-case, what-if scenarios, etc

What is the role of formal methods in digital twins?

- Conceptual clearness, semantics, compositionality
- Correctness
- Better tool support
- Beyond simulation: worst-case, what-if scenarios, etc

What is the role of knowledge representation in digital twins?

What is the role of formal methods in digital twins?

- Conceptual clearness, semantics, compositionality
- Correctness
- Better tool support
- Beyond simulation: worst-case, what-if scenarios, etc

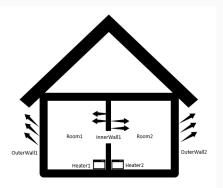
What is the role of knowledge representation in digital twins?

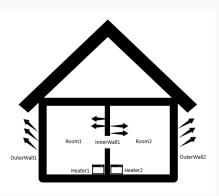
- Structural twin: uniformly represent knowledge about PT and DT
- Reasoning support that can exploit this knowledge
- Allows correctness properties to be expressed as relations between DT and PT

Outline: The Semantically Reflected Digital Twin

In the following, we describe a digital twin architecture using formal methods based on three technologies/techniques.

SWT

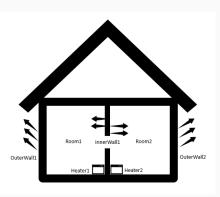

Semantic Web Technologies for uniform knowledge representation and integration of domain knowledge (part II).


FMI

The Functional Mock-Up Interface standard for interfaces between PT and DT, as well as simulations (part III).

SMOL

Semantic Reflection to reason about PT and DT through the integration of SWT and FMI into a programming language (part IV). The system is implemented in **SMOL**, a unique language designed specifically for integration of SWT and programming.



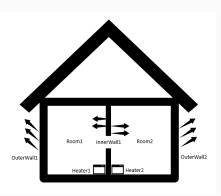
Structural twin

• Asset model: Domain knowledge connects the rooms, heaters, walls into a "house", with corresponding simulators, etc

• Asset model: Instance

instance of the domain knowledge for a particular house

Structural twin


• Asset model: Domain knowledge connects the rooms, heaters, walls into a "house", with corresponding simulators, etc

• Asset model: Instance

instance of the domain knowledge for a particular house

Behavioral twin

- 1. Digital twin infrastructure: coordinates simulation units
- 2. Twin configuration: coupled simulation units

Structural twin

- Asset model: Domain knowledge connects the rooms, heaters, walls into a "house", with corresponding simulators, etc
- Asset model: Instance

instance of the domain knowledge for a particular house

• Twin model: Domain & Instance instance of the domain knowledge for the behavioral twin

Behavioral twin

- 1. Digital twin infrastructure: coordinates simulation units
- 2. Twin configuration: coupled simulation units

Tool Installation

- Download https://github.com/smolang/SemanticObjects/ blob/master/examples/tutorialfiles.zip
- Download and install Protegé from https://protege.stanford.edu/products.php

- Download and install docker from https://www.docker.com/get-started/ (or from your favorite Linux distribution)
- Run docker pull ghcr.io/smolang/smol:latest
- Run docker pull openmodelica/openmodelica:v1.19.2-minimal

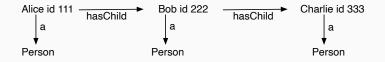
Today:

- **Part I** Digital Twins Introduction: Concepts and Engineering Perspectives
- Part II Modelling Knowledge using Semantic Technologies

Tomorrow:

- Part III Modelling Physical Systems
- Part IV Semantically Reflected Digital Twins

Semantic Technologies

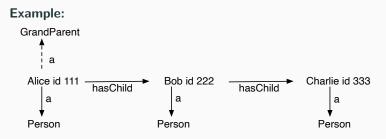


- Knowledge can be described ad hoc or in a structural manner
- Semantic Technologies facilitate the description of structured knowledge, consistency checking and reasoning
- W3C standards and well known technologies:
 - For data: RDF (Resource description framework)
 - For knowledge: OWL (Web Ontology language)
 - For queries: SPARQL(an RDF query language)

Data in **RDF** is expressed using a triple pattern, which consists of a *subject*, a *predicate*, and an *object*

Data in **RDF** is expressed using a triple pattern, which consists of a *subject*, a *predicate*, and an *object*

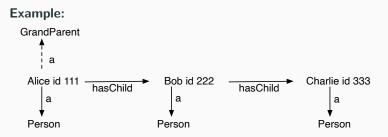
Example:


Here 'Alice' is subject, 'a' is predicate, 'Person' is object, 'Alice' is subject, 'id' is predicate, '111' is object, OWL: knowledge representation languages to build ontologies.

OWL: knowledge representation languages to build ontologies.

• Ontologies are logics for knowledge representation

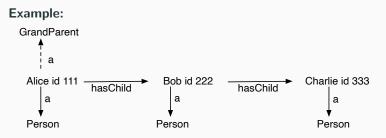
OWL: knowledge representation languages to build ontologies.


• Ontologies are logics for knowledge representation

 $\forall x \exists y \exists z \cdot hasChild(x, y) \land hasChild(y, z) \land Person(z) \implies GrandParent(x)$

OWL: knowledge representation languages to build ontologies.

• Ontologies are logics for knowledge representation



 $\forall x \exists y \exists z \cdot hasChild(x, y) \land hasChild(y, z) \land Person(z) \implies GrandParent(x)$

hasChild some (hasChild some Person) subClassOf GrandParent

OWL: knowledge representation languages to build ontologies.

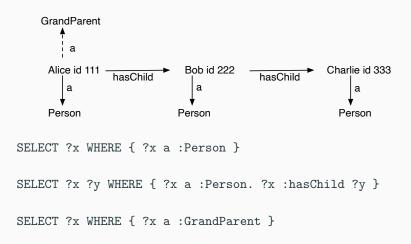
• Ontologies are logics for knowledge representation

 $\forall x \exists y \exists z \cdot hasChild(x, y) \land hasChild(y, z) \land Person(z) \implies GrandParent(x)$

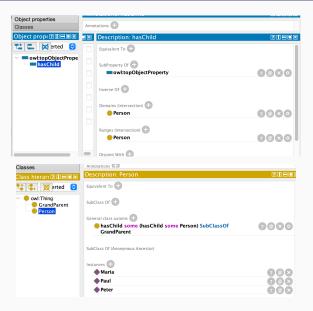
hasChild some (hasChild some Person) subClassOf GrandParent

• Ontologies represent knowledge that is incremented over time

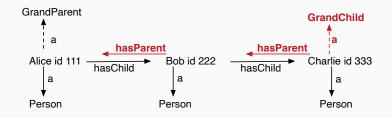
SPARQL


SPARQL is an RDF query language:

a query language for databases stored in RDF format


SPARQL

SPARQL is an RDF query language:


a query language for databases stored in RDF format

Example in Protégé

Add the GrandChild Class and the hasParent property.

Hint:

 $\forall x \exists y \exists z \cdot hasParent(x, y) \land hasParent(y, z) \land Person(z) \implies GrandChild(x)$

Download the example from: https://github.com/smolang/ SemanticObjects/blob/master/examples/tutorialfiles.zip File: example1a.ttl

Asset modelling

Asset model in the engineering domain

An asset model is an organized, digital description of the composition and properties of an asset

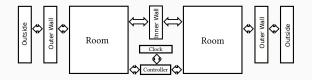
Asset modelling

Asset model in the engineering domain

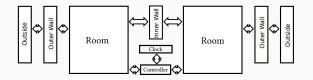
An asset model is an organized, digital description of the composition and properties of an asset

- In the engineering domain it is common practice to build asset models to support, e.g., maintenance, operations, design etc.
- There are currently several industry initiatives that endorse the use of ontologies for asset modelling, e.g., in the Industry 4.0

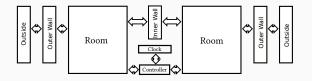
Asset modelling

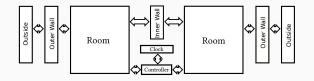

Asset model in the engineering domain

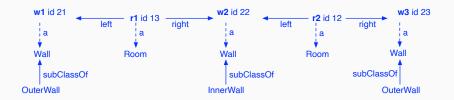
An asset model is an organized, digital description of the composition and properties of an asset

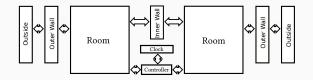

- In the engineering domain it is common practice to build asset models to support, e.g., maintenance, operations, design etc.
- There are currently several industry initiatives that endorse the use of ontologies for asset modelling, e.g., in the Industry 4.0

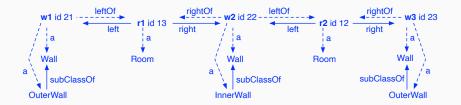
Asset models & digital twins

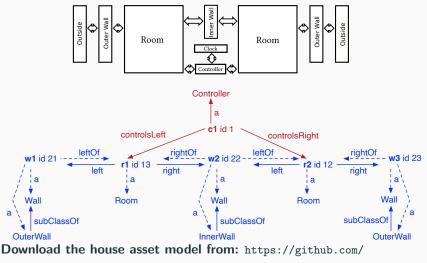

Assets models are any object of interest in a digital twin. They provide the twin with knowledge about the static structure that can be used for the twin's simulation model

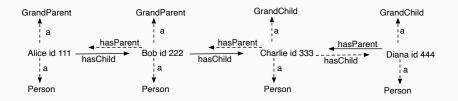












Exercise: The House Asset Use Case

smolang/SemanticObjects/blob/master/examples/tutorialfiles.zip

File: house.ttl

Today:

- Part I Digital Twins Introduction: Concepts and Engineering Perspectives
- Part II Modelling Knowledge using Semantic Technologies

Tomorrow:

- Part III Modelling Physical Systems
- Part IV Semantically Reflected Digital Twins